E-Commerce Distribution Center
Verdantas performed a significant scope of services for the ProLogis Park 70 E-Commerce site in Etna Township, Ohio.
The build to suit project consisted of site development for a 855,000 sf building that could accommodate truck dock facilities on the west side at completion of construction and accommodate truck dock facilities in the future on the east side along with a large employee parking area.
The storm water outlet for the site was located within the limited access right-of-way for Interstate 70, therefore Verdantas worked closely with the Licking County Engineer’s Office and Ohio Department Of Transportation on the storm water control of the project. Along with the on-site design Verdantas was also required to analyze the offsite storm water runoff from the eastern site (the Holy Cross Cemetery) and provide an overflow swale to collect higher rainfall events and re-route storm water runoff from the creek.
In addition, Verdantas' survey department provided all aspects of surveying services for this project. Verdantas performed an ALTA survey of the original property and all legal descriptions prior to the development of the industrial park.
Along with a development of this magnitude, roadway improvements were also required. Verdantas worked with the Licking County Engineer’s Office and ODOT to provide a comprehensive Traffic Impact Analysis as well as the design and construction plans for the turn lanes and signals on SR 40 and Etna Parkway. Verdantas managed the improvements through the public bidding and construction phases.
The schedule for this project demonstrates Verdantas' ability to meet the owner’s goals for the project, coordinate with the contractors during construction and also maintain the high level of design requirements for the reviewing agencies. While this building has not obtained formal LEED (Leadership in Energy and Environmental Design) certification, all aspects of the civil design meet the LEED design requirements for storm water runoff and control.
Location
Etna, OHCapability
Civil InfrastructureServices
SurveyRelated Projects
An existing roof vent arrangement was allowing rainwater to enter the Pot Room. Alden supported efforts to develop a roof vent geometry to eliminate the intrusion of rain water. The purpose of the CFD study was to ensure that the roof vent modification did not increase pot room temperature levels beyond specified limits for workers in the plant.
To evaluate the existing and proposed Pot Room arrangements, thermal and fluid flow profiles in the immediate vicinity of the pots were determined based on air flows through the plant floor and wall mounted vents. The detailed CFD model was developed from plant drawings to include all major basement, pot room and roof venting geometries. The surrounding ambient environment was included with quiescent atmospheric conditions and average ambient temperature. Thermal losses form the pots to the pot room air and from the pot room to the environment were included in the analysis. The results of the CFD modeling showed that the proposed modification to the roof venting arrangement was acceptable and would not increase the temperature in the worker-occupied spaces by more than 2 degrees F.
}', 13='{type=image, value=Image{width=2250,height=847,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Smelter-Pot-Room/Smelter-Pot-Room-Diagram.jpg',altText=''}}', 14='{type=string, value=Thermal and fluid flow profiles were evaluated for both existing and proposed venting arrangements}', 15='{type=image, value=Image{width=2250,height=847,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Smelter-Pot-Room/Smelter-Pot-Room-Temperature-CFD.jpg',altText=''}}', 16='{type=string, value=Heat transfer from the pots to the air passing through the pot room were evaluated}', 17='{type=image, value=Image{width=2400,height=869,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Smelter-Pot-Room/Smelter-Pot-Room-Ventilation-CFD.jpg',altText=''}}', 18='{type=string, value=CFD confirmed the efficacy of the modified roof vent system to maintain safe temperatures.}', 25='{type=number, value=0}', 27='{type=number, value=1}', 28='{type=number, value=0}', 29='{type=number, value=50}'}
Civil Infrastructure
Smelter Pot Room Roof Ventilation System
Read how a CFD study ensured that a roof vent modification did not increase pot room temperature levels beyond safe levels
Plant McDonough, owned and operated by Southern Company, has experienced excessive siltation at the makeup water intake. The intake uses cylindrical wedgewire screening within an intake originally designed for much larger, once-through cooling water flows. Flow modeling was performed to provide a viable passive solution to reducing the sediment accumulation at the intake. To model the geometric details of the system accurately, a field survey was performed prior to the flow modeling efforts. The flow study included both CFD modeling and scale physical modeling.
For this investigation, Alden developed a 1:20 scale live bed physical model. This model was extremely well tuned to reproduce the behavior of bed load sediment. Even with the very fine crushed walnut shell particles, however, it was challenging to reproduce the behavior of suspended load. The use of a high fidelity CFD model, therefore, proved extremely useful for this project, in that suspended load is generally very accurately tracked with CFD models, which are not well validated for bed load simulation. By using the two together, the two extremes of sediment transport are captured, and developing a solution that covers this range has a high likelihood of success.
}', 13='{type=image, value=Image{width=3872,height=2592,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Plant-McDonough/Physical-Model-Plant-McDonough.jpg',altText=''}}', 14='{type=string, value=A 1:20 live bed physical model was constructed to reproduce the behavior of suspended sediment load}', 15='{type=image, value=Image{width=2977,height=2386,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Plant-McDonough/Original-Construction-Plant-McDonough.jpg',altText=''}}', 16='{type=string, value=Image of the plant under original construction, provided courtesy of Southern Company}', 25='{type=number, value=0}', 27='{type=number, value=1}', 28='{type=number, value=1633353195000}', 29='{type=number, value=60}'}
Civil Infrastructure | Hydrology Hydraulics and Fluids
Plant McDonough Intake Modification
CFD and physical model study to assist in the evaluation of a solution to reduce the sediment accumulation.