Cabinet Gorge Dam Total Dissolved Gas (TDG) Spillway Modifications
During periods of spill, Cabinet Gorge Dam was generating total dissolved gas (TDG) concentrations in excess of water quality standards. Through a series of feasibility studies, design evaluations, retrofits and/or modifications, Alden engineers worked to help Avista Corporation meet their FERC licensing requirements for the hydroelectric project located in Idaho on the Clark Fork River.
In early studies, the Alden team performed a 1:50 scale physical hydraulic model study to investigate re-commissioning of diversion tunnels used during construction of the project as bypass tunnels to pass spill flows at lower TDG levels than are generated during spillway operation. Studies revealed that the reduction in TDG afforded by the bypass tunnels was less than originally expected.
Additional feasibility studies were conducted to evaluate two alternatives for TDG reduction. One idea was the creation of off-stream “gas stripping” channels downstream of the dam, which ultimately proved to be fish passage un-friendly. Ultimately, modification of the existing spillway crest was found to be most feasible.
Full hydraulic and structural engineering services from feasibility through design and construction have been completed for the modifications to five of the eight spill bays in order to reduce TDG. Construction plans and specifications were prepared, and documentation for submittal to FERC was produced. Alden also provided construction technical support.
In addition to the work done to reduce TDG, Alden engineers also performed several structural projects for Cabinet Gorge Dam:
- A Stoplog Deployment Crane was designed and fabrication-level drawings developed for the deployment crane system for lifting 10-ton stoplogs. The steel frame was designed to allow assembly and disassembly at each of the eight spill bays. Performance specifications for the 15-ton top running hoist were also provided
- The FERC Supporting Technical Information (STI) Documents were reviewed and updated for Section 6—Hydrology/Hydraulics and Section— Stability/Stress Analysis.
In further compliance measures, the development of a fish trap design in the project tailrace for the expedited transmissivity of ESA listed bull trout past the project was supported. This effort also used the 1:50 scale model for initial site selection studies. Alden also provided a fisheries and hydraulic engineering representative on a “panel of experts” who advised on the best approach for trap site selection and design. Computational Fluid Dynamics (CFD) modeling of the project tailrace was performed to confirm satisfactory location and performance of the selected trap design. The CFD model developed for the fish trap studies also confirmed compatibility of the TDG mitigation measures with the fish trap operations and to guide future development of the TDG mitigation.
Dive in Deeper
Read more about Total Dissolved Gas at High Head Dams in this three-part blog series.
Capability
Civil InfrastructureNatural Resources & Environmental Planning
Services
Hydraulic Structure Engineering DesignFish Passage Design, Modeling & Testing
Fish Protection Design, Modeling & Testing
Related Projects
Between 1932 and 2010 the state of Louisiana has lost about 2006 square miles of land due to a combination of subsidence, sea level rise, and management of the Mississippi River. Computer models predict a further loss of 1800 to 4200 square miles in the next 50 years, amounting to 55% of the land in Plaquemines Parish and resulting in $300 million in annual economic damage. Following hurricanes Katrina and Rita, the Coastal Protection and Restoration Authority (CPRA) was formed as a single state entity with the authority to protect and restore the lands of coastal Louisiana.
The $50 billion coastal master plan includes restoration and risk reduction projects. The restoration projects include barrier island restoration, hydrologic restoration, marsh creation, ridge restoration, sediment diversion, and shoreline protection. The Barataria and Breton Basins have experienced some of the largest land loss—almost 700 square miles. Two sediment diversions are being designed, one for each basin. The sediment diversions connect the Mississippi River to the basins, allowing for the controlled diversion of up to 75,000 cfs of water and sediment to the Barataria basin and 30,000 cfs to the Breton basin.
The design and construction of sediment diversions on the scale proposed for Barataria and Breton is unprecedented, the results of which will rely heavily on the numeric and physical modeling required to design the major diversion features, including the inlet, conveyance, and outlet structures. Alden is constructing two 1:65-scale, live-bed physical models to test performance and effectiveness of the diversions.
Discover more:
- Making Mississippi Mud In Massachusetts To Restore Wetlands | Here & Now [wbur.org]
- A Mini Mississippi In Mass. May Help Save New Orleans From Rising Seas [90.9 Boston NPR]
- Rerouting the Mississippi River could build new land—and save a retreating coast [Science Magazine]
- Find the Mississippi River in Massachusetts [Chronicle 5 WCVB]
- To Save Louisiana’s Vanishing Coast, Build a Mini Mississippi Near Boston [The New York Times nytimes.com]
- Louisiana researchers tackle a changing Mississippi Delta [PBS News Hour Weekend pbs.org]
- Mid-Barataria Sediment Diversion could create, save 47 square miles of land over 50 years [nola.com]
- CPRA Using Giant Model to Test Mid-Barataria Diversion
- Mississippi River Diversions Could Save Louisiana's Drowning Coast [enr.com]
- Louisiana Coastal Protection and Restoration Authority [Official Website]
- A Mini-Diversion in Boston is Paving the Way for Louisiana’s Boldest Coastal Project [mississippiriverdelta.org]

Civil Infrastructure
Mid-Barataria Sediment Diversion
Alden constructed two 1:65-scale, live-bed physical models to test performance and effectiveness of the proposed land rebuilding diversions on the Mississippi River.
The Cedar Cliff dam and hydropower project is located approximately six miles from Cullowhee, in Jackson Country, North Carolina. The dam and hydroelectric facility is owned by Duke Energy and is located downstream of three other hydroelectric projects that are operated as a system.
The primary spillway includes a Tainter gate and the existing auxiliary spillway system includes two fuse plug sections (with different crest/activation elevations). It was determined that the combination of the primary and auxiliary spillway systems were not adequate to safely pass the regulatory-increased Inflow Design Flood (IDF). The construction of a Hydroplus Fusegate system with six semi-labyrinth Fusegates in an enlarged auxiliary spillway channel was selected to increase spillway capacity to safely pass the new IDF which is now the full Probable Maximum Flood (PMF).
Two reduced scale physical models were constructed to determine the required size of a ventilation system for the proposed Cedar Cliff Fusegates and headpond and tailwater levels at each Fusegate for flows up to the sixth Fusegate activating. The tailwater levels were required for design of the Fusegate ballast system.
}', 9='{type=string, value=https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Cedar-Cliff/Cedar-Cliff-Model-Testing.mp4?t=1641419157050}', 13='{type=image, value=Image{width=4608,height=3456,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Cedar-Cliff/Cedar-Cliff-Model-Test-Chute-Looking-Upstream.jpg',altText=''}}', 14='{type=string, value=Model testing looking upstream}', 15='{type=image, value=Image{width=4608,height=3456,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Cedar-Cliff/Cedar-Cliff-Model-Test-Looking-Downstream.jpg',altText=''}}', 16='{type=string, value=Model tesing looking downstream}', 17='{type=image, value=Image{width=4608,height=3456,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Cedar-Cliff/Cedar-Cliff-Model-Final-Construction-tailwater.jpg',altText=''}}', 18='{type=string, value=Cedar Cliff modeling during final construction}', 19='{type=image, value=Image{width=4608,height=3456,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Cedar-Cliff/Cedar-Cliff-Model-Final-Construction.jpg',altText=''}}', 20='{type=string, value=Cedar Cliff model at final construction}', 21='{type=image, value=Image{width=4608,height=3456,url='https://20952198.fs1.hubspotusercontent-na1.net/hubfs/20952198/PROJECTS/ALDEN/Cedar-Cliff/Cedar-Cliff-Model-Construction-Piping.jpg',altText=''}}', 22='{type=string, value=View of the piping structures used to supply water to the Cedar Cliff model}', 25='{type=number, value=0}', 27='{type=number, value=1}', 28='{type=number, value=1633353243000}', 29='{type=number, value=20}'}
Civil Infrastructure
Cedar Cliff Spillway
Physical model study to determine hydraulic performance of a proposed auxiliary spillway system during flooding events